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ABSTRACT

Current top-down algorithms for constructing bounding volume hi-
erarchies (BVHs) using the surface area heuristic (SAH) rely on an
estimate of the cost of the potential subtrees to determine how to
partition the primitives. After a tree has been fully built, however,
the true cost value at each node can be computed. We present two
related algorithms that use this information to reduce the tree’s to-
tal cost through a series of local adjustments (tree rotations) to its
structure. The first algorithm uses a fast and simple hill climbing
method and the second uses simulated annealing to obtain greater
improvements by avoiding local minima. Both algorithms are easy
to add to existing BVH implementations and are suitable for pre-
processing static geometry for interactive ray tracing.

Keywords: Ray tracing, acceleration structures, bounding volume
hierarchies, tree rotations.

1 INTRODUCTION

Algorithms based on the surface area heuristic (SAH) [6] currently
represent the state of the art in the construction of kd-trees [7] and
bounding volume hierarchies (BVHs) [11, 9] for accelerating ray
tracing. This heuristic provides a cost model for the average time
that a ray will take to traverse down the tree and intersect candidate
primitives at the leaf notes. In its basic form as used for binary tree
BVHs constructed over triangle meshes, it says that the cost, C, of
a node is

C =
{

Ct +CiN for leaf nodes
Ct + SLCL+SRCR

S for interior nodes,

where Ct and Ci, respectively, represent the relative costs for a
traversal step and for a primitive intersection step in the rendering
implementation and N is the number of primitives at a leaf node.
SL, SR, S give the respective surface areas of the bounding volumes
of the left child, right child and current node. Similarly, CL and CR
give the computed costs for the left and right children.

The SAH algorithm for constructing BVHs proceeds in top-
down fashion. At each node it considers a set of candidate partition-
ings of the primitives and greedily chooses the one that minimizes
its estimate of the node’s cost. Typically, “exact” SAH algorithms
form these candidate partitionings by using the planes from each of
the six sides of each primitive’s axis-aligned bounding box. These
partitionings appoint each primitive to a group based on which side
of the plane the primitives’ centroid falls on. Once the best partition
has been found, these groups become the current node’s children
and then the process continues recursively down until the number
of primitives assigned to a node falls below some threshold at which
point that node becomes a leaf.

Approximate SAH construction algorithms for BVHs [15] work
similarly, except that they use binning to sample a smaller num-
ber of potential partitions—often by simply choosing axis-aligned
planes at regular intervals rather than the sides of the primitives’

bounding boxes. From these, they fit a simple curve to the cost esti-
mates and use the curve’s minimum to choose the best plane along
which to partition the primitives. Thus, the approximate algorithms
attempt to build a tree with a quality close to those of the exact
algorithms’ but in a fraction of the time.

One notable characteristic of all top-down construction algo-
rithms based on the SAH is that they are not minimizing the true
value of the C but only an estimate because CL and CR can only
be computed with certainty after their corresponding subtrees have
been fully constructed. Instead, they estimate CL and CR either lin-
early or logarithmically from the number of primitives potentially
assigned to each child.

After fully constructing the tree, however, one can compute the
true cost value both for the tree as a whole and for each node. With
this additional information it may be possible to produce an im-
proved tree with a lower cost. Ng and Trifonov [12] partially ex-
plored stochastic algorithms for this by repeatedly building BVH
trees with jittered splitting plane locations, and then preserving the
tree that yields the lowest true cost. This method failed to produce
better trees than the standard greedy algorithm. Inspired by the use
of genetic algorithms for constructing BSP trees in [5], they also
explored extending Goldsmith and Salmon’s [6] bottom-up BVH
construction method with a genetic algorithm to optimize the order
of primitive insertion. Despite the improvements yielded by the ge-
netic algorithm, they found that the standard top-down greedy build
algorithm still produced superior trees.

In this paper we explore an alternate method based on starting
with an already existing BVH such as one produced by the usual
top-down greedy algorithm and then using local tree rotations—
similar to those used for balancing binary search trees—and hill
climbing to improve it. Then we show how to combine this
with stochastic global optimization via a simulated annealing algo-
rithm [8, 14] to attempt to avoid local minima. We conclude with a
description of our implementation and some remarks on the results
obtained from it.

2 TREE ROTATIONS

Self-balancing binary search trees such as AVL [1] and red-
black [3] trees use tree rotations as the fundamental operation for
re-balancing the tree after an insertion or deletion. Splay trees [13]
also use tree rotations, but apply them after a lookup in order to
improve future access times when it needs that element again soon.

Tree rotations are local operations involving the root of a sub-
tree and its immediate children and grandchildren and come in two
symmetric forms: left-rotations and right-rotations. By altering the
linkage of nodes within the tree, one of the children moves up to
take the place of the root of the subtree, while the original root de-
scends to become a child of the new root. This is shown in Figure 1.
Which child ascends and which descends depends on whether a
left-rotation or a right-rotation is being applied. In either case, a
rotation will undo the effects of its opposite. Furthermore, rotations
always preserve the search ordering of the original tree and it is pos-
sible to transform any two binary search trees with the same nodes
into the each other through a sequence of rotations.

We can apply a similar idea to modifying BVHs. Because the
BVH has no order property and the interior nodes carry no inher-
ent information of their own—only the links to their children and
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Figure 1: Left- and right-rotations on ordered binary trees

the union of their children’s bounding volumes—the rotation opera-
tions are slightly different, however. The rotations reduce to simply
swapping a child with a grandchild from the other side. Figure 2
shows the four possible pairs to exchange. As with the rotations for
binary search trees these result in elevating one subtree, rooted at
the grandchild, while demoting another, rooted at the child.

(a) (b)

(c) (d)

Figure 2: Nodes to exchange for each possible rotation

Note that these exchanges do not affect the bounding volume
at the subtree’s root—only its children’s bounding volumes will
change. Because of this, an exchange will not affect the bound-
ing volume of any node in the tree above the subtree’s root and so
the denominators in the computations of the SAH costs for these
upper nodes will remain unchanged. Consequently, any rotation
that increases or decreases the subtree root’s cost must produce a
corresponding, monotonic change to the global cost of the BVH for
the entire scene. Applying a rotation that improves the subtree’s
cost will always improve the scene’s global cost and choosing the
rotation that produces the greatest reduction to the local cost will
produce the greatest reduction to the global cost. Moreover, com-
puting the local effect of a rotation is a constant-time operation if
the costs and surface areas of the children and grandchildren are
available.

3 HILL CLIMBING

This leads to a very straightforward, efficient, hill climbing algo-
rithm for improving the cost of a BVH after it has been constructed:
recurse over the tree and visit each node. If the node is a leaf node,
simply compute its cost and return. If the node is an interior node,
visit its children first and then recompute its current cost. Next, de-
termine which rotations the node is eligible to be the root for and
compute the new costs that the node would have if the rotations
were applied. If any of them yield an improvement over the current
cost, then apply the rotation that produces the greatest improve-
ment, update the node’s cost and return. Otherwise, leave the node
unchanged and return to the parent. Repeat these passes through
the tree until no new beneficial rotations can be found.

One improvement that we have found beneficial is to allow for
direct swaps between the grandchildren of a node. While not true
rotations, the procedure for updating the tree and computing the
effect of these swaps on the node’s cost is nearly identical to that for
true rotations. Though a sequence of rotations can produce the same
effect, the intermediate steps may temporarily increase the tree’s
cost and thus the hill climbing algorithm would overlook them.

Figure 3 demonstrates this algorithm applied to the standard con-
ference room scene. Starting with the initial global SAH cost after
the tree’s construction, each pass of our algorithm progressively
lowers the cost until it cannot reduce it any further.
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Figure 3: Progressive lowering of SAH cost for conference room

4 SIMULATED ANNEALING

While the algorithm described above will never increase the global
SAH cost of a BVH it tends to quickly settle into local minima. To
remedy this we used the simulated annealing algorithm [8, 14], a
variant of the Metropolis algorithm [10]. Inspired by the annealing
methods for growing large crystals, simulated annealing uses the
concept of a global temperature to control moves that worsen the
solution but also allow it to escape the minima.

The algorithm requires several pieces: an energy function to
compute the energy of a particular state, a way to propose can-
didate transitions to neighboring states, an acceptance probability
function, and an annealing (cooling) schedule that defines how the
temperature changes over time. The algorithm works by repeatedly
proposing changes that the energy function measures the effect of.
It always accepts changes that decrease the energy but for changes
that increase the energy, the acceptance probability function uses
the measured difference in energy and the current temperature from
the annealing schedule to compute a probability. It accepts the pro-
posed change if a random number in [0,1) is less than this proba-
bility and rejects them otherwise. After each iteration, it adjusts the
current temperature according to the annealing schedule. Finally,
there is often a “quench” phase after the annealing schedule ends.
This phase moves to the local minimum by only accepting changes
that reduce the systems energy.

Mapping this to the BVH tree rotation algorithm is straightfor-
ward. The SAH metric provides the energy function, while the set
of rotations possible at each node provides the proposed state transi-
tions. For the acceptance probability function, we use the standard
Boltzmann factor used by most simulated annealing implementa-
tions,

P(∆e,T ) =
{

min(e−∆e/T ,1) T > 0
0 T = 0,

where ∆e is the change in energy produced by the proposed
change and T is the current temperature. Through experimen-
tation we have found that a clamped and linearly ramped sine
function makes a reasonably good annealing schedule. We used
T (i) = max(0,−sin(i2π/ f ))(N− i)h/N, where i is the current iter-
ation over the tree, f is the sine function’s frequency, h is the hottest
temperature allowed, and N is the schedule’s length, defined as the
total number of iterations to run. In our tests, we used N = 1250,
f = 50 and 0.8≤ h≤ 2.2, depending on the scene.
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To implement this, we start with the previous hill climbing algo-
rithm that recurses over the tree and at each node test each possible
rotation and swap to determine which one lowers the local cost of
the node the most. However while trying to find the minimum if
a proposed exchange would increase the node’s local cost relative
to the currently best found exchange then instead of outright reject-
ing it as before, we pick a random number ξ in [0,1) and test if
P(∆e,T ) < ξ and use the difference in local cost as ∆e. If this test
succeeds then we accept this as the currently best found exchange
anyway. After all valid rotations and swaps around a node have
been tested this way, we apply the best one, if any. After the re-
cursion has finished processing all the nodes this way, we update
the temperature for the next pass and begin walking the tree again.
Because we define P(∆e,T ) to always be zero when T = 0, the
simulated annealing algorithm reduces to the original hill climbing
algorithm for the phases of the annealing schedule when T = 0. At
the end of the schedule, we quench the system by leaving T = 0
and continue to make passes until the global cost of the BVH tree
converges to a local minimum. Optionally, we can retain a copy
of the best tree found as the optimization progresses and replace it
whenever a pass ends with an improvement to it, then return that
tree as the simulated annealing algorithm’s result. If the annealing
schedule starts out with T = 0 for enough iterations with this op-
tion then in the worst case the simulated annealing algorithm will
at least match the hill climbing algorithm.

Figure 4 shows how the simulated annealing algorithm reduces
the global SAH cost for the Soda Hall scene. The annealing sched-
ule begins with a phase where the temperature is zero and so it will
initially lower the global cost for the scene as with the hill climbing
algorithm before. After a few iterations, the temperature rises and
the algorithm makes changes to the tree that result in increasing the
tree’s cost. By cycling through these heating and cooling phases
while gradually diminishing the strength of the heating phases, the
BVH for the scene is brought to a lower global SAH cost than would
be possible with the hill climbing algorithm alone (left plateau on
the graph.)
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Figure 4: Simulated annealing applied to the Soda Hall model

Note that for any two trees with the same leaves and the same
number of interior nodes, there is a sequence of rotations that will
transform one into the other. Because the number of leaf nodes
determines the number of interior nodes, the best possible BVH
(as defined by global SAH cost) for a given set of leaves is always
reachable from any other state. With this property, the probability
of the simulated annealing algorithm coming across the best pos-
sible BVH approaches one as the annealing schedule grows [2].
While this will require an infeasible amount of computation in prac-
tice, the algorithm is nonetheless theoretically sound.

5 RESULTS

We have implemented our optimization algorithm in the Manta in-
teractive ray tracer [4]. The BVH code in Manta evolved from a
port of the code from the DynBVH system [16]. We have kept the
existing BVH construction and traversal code otherwise unmodified
and simply hooked in our tree optimization to run after the BVH’s
initial construction. For all tests, we used the exact SAH build al-
gorithm rather than the approximate binning algorithm.

For interior nodes, the BVH traversal code tries to improve the
chances of early ray termination by choosing which child of an in-
terior node to process first based on the split axis recorded for that
node and the ray direction’s sign along that axis. Because the op-
timization process effectively destroys this information, we have
added a final pass over the BVH tree to try recreate this. At each
interior node, this checks the bounding box of the children and de-
termines which axis provides the greatest separation between the
end of the one child’s extent and the beginning of the other child’s
extent. It records this as the node’s split axis and the orders the
children accordingly. If there is no such axis which separates the
bounding boxes’ extents then it uses the axis with the least overlap
of the extents instead.

We benchmarked the performance impact of the changes on ren-
dering with a single core on a 2.8GHz Core 2 Duo machine so as
to avoid jitter and overhead from threading synchronization. For
our tests, we used two different rendering modes: first, we tested
with pure ray casting (primary rays only), traced in packets of 64
rays each and with the SSE code paths and culling via interval arith-
metic culling enabled. This represents state of the art SIMD packet
traversal with highly coherent rays. To test the opposite end of the
spectrum, we also measured the performance on two-bounce path
tracing with the SSE code paths turned off, packets of a single ray
each and 1024 samples per pixel. This test emulates classic single
ray rendering with rays diverging to traverse the scene from many
directions.

Table 1 shows the results of these test on several common models
along with the times required by each algorithm to optimize them.
The rows showing ray cast and path trace times list the average
time in seconds needed to render a single frame. In both cases, the
percentages indicate the time needed to render with optimization
relative to the time to render without optimization. Similarly, the
percentages given in the rows for the SAH cost compare the global
SAH cost for the scene after optimization to the cost before. Thus
for all rows lower percentages indicate greater benefits from the
optimization. The table also provides the time each method spent
on optimizing the trees.

As shown in Table 1, the simulated annealing algorithm required
significantly more time to process the BVH tree than the hill climb-
ing algorithm but achieved a better reduction in the scenes’ SAH
costs. The number of iterations to run the simulated annealing is
a user controllable parameter, however, and thus it is possible to
control the trade-off between the processing time and the degree of
improvement to the tree.

6 DISCUSSION

Several things are noteworthy about these results. First, scenes with
densely tessellated models such as the Happy Buddha, the Dragon,
and even to some extent the Fairy Forest, present the greatest dif-
ficulty with respect to optimization. While it is still possible for
the optimizer to find small improvements that lower the SAH cost
of these scenes, the improvements made tend to be quite small and
may even be slightly detrimental to the rendering times. The major-
ity of the iterations of the simulated annealing algorithm for these
scenes ended with the computed SAH cost of the scene greater than
it was initially.

Interestingly, this suggests that the top-down greedy construction
algorithm succeeds at producing good trees for these scenes despite
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Scene Happy Buddha Dragon Powerplant §9 Powerplant §16 Fairy Forest Sponza Atrium Conference Soda Hall
Triangles 1,087,474 871,306 121,862 365,970 174,117 76,065 282,664 2,169,132

No Optimization
SAH Cost 552.6 486.0 154.3 278.8 294.9 713.5 402.4 685.5
Ray Cast Time 0.262 0.496 0.165 0.365 0.372 0.294 0.229 0.326
Path Tr. Time 153.8 197.9 149.2 572.1 370.1 565.5 504.4 1436.8

Hill Climbing Optimization
SAH Cost 549.6 (99.5%) 484.3 (99.7%) 143.2 (92.8%) 260.4 (93.4%) 290.2 (98.4%) 647.6 (90.8%) 360.3 (89.5%) 626.6 (91.4%)
Ray Cast Time 0.263 (100.2%) 0.496 (100.0%) 0.162 (98.5%) 0.363 (99.4%) 0.373 (100.1%) 0.307 (104.5%) 0.224 (97.8%) 0.320 (98.3%)
Path Tr. Time 154.8 (100.7%) 199.5 (100.8%) 141.2 (94.6%) 567.9 (99.3%) 376.2 (101.6%) 561.4 (99.3%) 446.8 (88.6%) 1417.1 (98.6%)
Time to Opt. 1.71 1.23 0.18 0.53 0.24 0.13 0.68 4.93

Simulated Annealing Optimization
SAH Cost 549.6 (99.5%) 484.3 (99.7%) 136.1 (88.2%) 247.3 (88.7%) 281.6 (95.5%) 600.8 (84.2%) 340.2 (84.5%) 561.0 (81.8%)
Ray Cast Time 0.263 (100.2%) 0.496 (100.0%) 0.160 (97.1%) 0.354 (97.2%) 0.374 (100.4%) 0.315 (107.3%) 0.216 (94.4%) 0.306 (93.9%)
Path Tr. Time 154.8 (100.7%) 199.5 (100.8%) 127.5 (85.4%) 524.2 (91.6%) 368.6 (99.6%) 547.0 (96.7%) 415.7 (82.4%) 1403.4 (97.7%)
Time to Opt. 528.26 426.48 44.44 114.08 74.11 28.51 119.26 857.57

Table 1: Results of the algorithm applied to various scenes. All times are in seconds and all percentages are relative to the non-optimized values.

using only an approximation to the true cost of the subtrees. At the
very least, these trees seem to be close to strong local optima if not
the global optimum. This confirms that the greedy approach and the
approximations to the subtree costs are valid approaches for these
models.

For scenes with triangles of heterogeneous sizes such as the ar-
chitectural scenes, the optimization seems to fair much better. Here,
the simulated annealing algorithm is able to achieve a 15.5% reduc-
tion to the cost of the Conference Room scene and a corresponding
17.6% improvement to the path trace rendering time. For these
types of scenes, the top-down greedy build does not come as close
to building trees near the local optima as it does for the finely tessel-
lated scenes and thus the tree optimizations succeed better at low-
ering the cost.

Also notable is the degree of correlation between the changes in
the SAH cost and the changes in the rendering times. In particular,
the correlation between the cost value and the time for packetized
ray casting appears to be much weaker than it is between the cost
value and the time to path trace with single rays. While this is not
surprising, as the surface area heuristic was developed based on the
assumption of tracing single rays with well distributed directions,
this does suggest the need for an improved heuristic that takes into
account the amortization afforded by ray packets with culling. We
believe that this would be a valuable area of future work.

7 CONCLUSION

In this paper, we have presented two novel algorithms for improv-
ing the SAH cost of an existing BVH tree. Both algorithms are
easy to add to existing BVH implementations and are suitable for
preprocessing the static content of scenes before rendering, with
architectural environments seeing the best improvement. The hill
climbing algorithm can yield modest improvements to a scene with
millions of primitives in a few seconds, while the simulated anneal-
ing algorithm can produce greater improvements given more time.
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